Acid-catalysed Reduction of Flavin Analogues by an NADH Model Compound, 10-Methyl-9,10-dihydroacridine and *cis*-Dialkylcobalt(III) Complexes

Shunichi Fukuzumi,* Sadaki Kuroda, Tatsushi Goto, Kunio Ishikawa, and Toshio Tanaka Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

An acid-stable NADH model compound, 10-methyl-9,10-dihydroacridine (AcrH₂) (**3**), and *cis*-dialkylcobalt(III) complexes, *cis*-[R₂Co(bipy)₂]⁺ (R = Me, Et; bipy = 2,2'-bipyridine), can reduce flavin analogues {FI: 3-methyl-10-phenylbenzo[*g*]pteridine-2(1*H*),4(3*H*)-dione (**1**) and riboflavin (**2**)}, efficiently in the presence of perchloric acid (HClO₄) in acetonitrile (MeCN) at 298 K to yield the corresponding dihydroflavin radical cations (FIH₂⁺⁺). Essentially, no reaction occurs in the absence of HClO₄ under the same conditions. The radical cations (FIH₂⁺⁺) formed are very stable to oxygen in the presence of HClO₄ in MeCN. Large primary kinetic isotope effects [$k_{\rm H}/k_{\rm D}$ 9.6 ± 0.8 and 9.9 ± 0.8 for (**1**) and (**2**), respectively] have been observed for the formation of FIH₂⁺⁺, indicating that hydride transfer from AcrH₂ to the protonated flavins (FIH⁺) to give the dihydroflavins (FIH₂) is followed by fast comproportionation between FIH₂ and FIH⁺ to yield FIH₂⁺⁺ in the presence of HClO₄ in MeCN. The reaction mechanisms of hydride transfer from AcrH₂ to FIH⁺ are compared with the acid-catalysed electron-transfer reactions from *cis*-[R₂Co(bipy)₂]⁺ to FIH⁺.

The reduced and oxidized forms of nicotinamide adenine dinucleotide (NADH and NAD⁺, respectively) and flavins are typical coenzymes which play essential roles in biological redox reactions, especially in the primary step for the reduction of dioxygen through the respiratory chain.¹ Since Singer and Kearney² discovered the non-enzymatic oxidation of NADH by riboflavin extensive studies on the reactions between various NADH model compounds and flavin analogues have been reported, which aid the understanding of the mechanisms of these fundamental reactions.^{3–8} Most studies on the reactions, so far reported, have been limited to those in aqueous solution, ^{3–8} since flavin analogues are more reactive in aqueous solution than in aprotic solvents.⁹

As previously reported the oxidizing ability of flavin analogues in MeCN is significantly improved by complexation with Mg²⁺ and Zn²⁺ ion.¹⁰ In fact, a typical NADH model compound, 1-benzyl-1,4-dihydronicotinamide (BNAH), is readily oxidized by flavin analogue–Zn²⁺ complexes in MeCN, although essentially no reaction occurs in the absence of the metal ion.⁹ Since the metal ion which can activate a flavin analogue may act as hard acid, more efficient activation may be expected if a stronger acid such as perchloric acid (HClO₄) is used. However, NADH and the ordinary model compounds are known to be subject to acid-catalysed hydration,^{11,12} and so cannot be used as the reductants in the presence of strong acids.

It was the aim of the present work to use an acid-stable NADH model compound, 10-methyl-9,10-dihydroacridine (AcrH₂) (3),¹³ as a reductant in order to investigate the acid-catalysed reduction of flavin analogues in the presence of HClO₄, (in MeCN). The acid-catalysed electron-transfer reactions from *cis*-dialkylcobalt(III) complexes, *cis*-[R₂Co-(bipy)₂]⁺, to flavin analogues in the presence of HClO₄ in MeCN, which can be compared with the acid-catalysed reduction of flavin analogues by AcrH₂, is also reported.

Experimental

Materials.—Preparation of 3-methyl-10-phenylbenzo[g]pteridine-2(1H),4(3H)-dione (1)^{10,14} and AcrH₂¹⁵ is described elsewhere. Riboflavin (2) was obtained commercially and purified by standard procedures. The 9,10-dideuteriated

analogue of AcrH₂, AcrD₂, was prepared by reduction of 10methyl-9-acridone with LiAlD₄.^{16,17} 10-Methylacridinium perchlorate (AcrH⁺ClO₄⁻) was prepared by the addition of Mg(ClO₄)₂ to 10-methylacridinium iodide in water. *cis*-Dialkylcobalt(III) complexes, *cis*-[R₂Co(bipy)₂]ClO₄ (R = Me, Et) were prepared by the reaction of CoCl₂·6H₂O with an excess of NaBH₄ in the presence of the corresponding alkyl halide.^{18,19} They were isolated as the perchlorate salts and recrystallized from methanol-water. Perchloric acid (70%) was obtained from Wako Pure Chemicals. Reagent grade acetonitrile was purified by a standard procedure.²⁰

Analytical Procedures.—Electronic absorption spectra weremeasured using a Union SM-401 spectrophotometer with a quartz cuvette which was placed in a thermostatted compartment at 298 K. The protonation equilibria of (1) were examined from the change in the electronic spectra of (1) by addition of HClO₄ to MeCN solutions of (1) with a range of water concentration. Spectral titrations were carried out by adding known quantitites of a deoxygenated stock solution of AcrH₂ or cis-[R₂Co(bipy)₂]⁺ in MeCN to a quartz cuvette

Table 1. Protonation equilibrium constants (K_1) of (1) in the presence of HClO₄ in MeCN containing H₂O at 298 K.

$H_2O/mol dm^{-3}$	$K_1/\mathrm{dm^3\ mol^{-1}}$
< 10 ⁻³	2.7×10^{6}
5.4×10^{-1}	4.3×10^{3}
27	9.2×10^{-1}

Figure 1. (a) E.s.r. spectrum of $(1)H_2^{+*}$ formed by the reduction of $(1)H^+$ (5.0 × 10⁻⁴ mol dm⁻³) by AcrH₂ (5.0 × 10⁻⁴ mol dm⁻³) in the presence of HClO₄ (1.0 × 10⁻² mol dm⁻³) in degassed MeCN; (b) the computer-simulated spectrum of $(1)H_2^{+*}$.

containing a known aliqout of the flavin analogue (Fl) in the presence of $HClO_4$ in MeCN. The amounts of the dihydroflavin radical cations (FlH₂⁺⁺) and 10-methylacridinium ion (AcrH⁺) formed were determined from the absorbances at λ_{max} [470 and 500 nm for (1)H₂⁺⁺ and (2)H₂⁺⁺, respectively, and 358 nm for AcrH⁺]. The gaseous products formed in the reactions of *cis*-[R₂Co(bipy)₂]⁺ with the flavin analogue in the presence of HClO₄ in MeCN were analysed by gas chromatography using a 2 m Unibeads 1S column.

The e.s.r. spectroscopic measurements were carried out using a JEOL-X band spectrometer (JES-ME-LX) at room temperature. After the completion of the reaction of (1) or (2) $(8.0 \times 10^{-4} \text{ mol dm}^{-3})$ with AcrH₂ or *cis*-[Et₂Co(bipy)₂]⁺ $(1.1 \times 10^{-3} \text{ mol dm}^{-3})$ in the presence of HClO₄ (2.0 × 10⁻³ mol dm⁻³) in degassed MeCN, an aliquot of the resulting solution was transferred to a 1 mm quartz tube under nitrogen, and it was thoroughly degassed by successive freeze-pumpthaw cycles. The e.s.r. spectra were recorded with a nonsaturating microwave power (modulation amplitude 8.0×10^{-2} mT). Further reduction of modulation amplitude did not improve the hyperfine coupling resolution. The g-value and the hyperfine coupling constants (h.f.c.) of the e.s.r. spectra were calibrated using an Mn^{2+} e.s.r. marker. The e.s.r. spectra were simulated using a NEC 9801 VM₂ microcomputer.

Kinetic Measurements.—Kinetic measurements were carried out using a Union RA-103 stopped-flow spectrophotometer for reactions of half-life less than 10 s and a conventional spectrophotometer for the anaerobic reactions (half-lives greater than 100 s). Rates were monitored by the rise in the absorbances at λ_{max} of FlH₂^{+•} (see above) under pseudo-firstorder conditions in the presence of more than tenfold excess Fl and HClO₄ at 298 K. Pseudo-first-order rate constants were determined by least-squares curve fitting using a Union System 77 microcomputer.

Results

Protonation of Flavin Analogues.—Flavin analogues (Fl) are known to be protonated at the N-1 position in strongly acidic aqueous solution $(pK_a \ ca. \ 0)$.²¹ In MeCN, the protonation of (1) [equation (1)] occurs much more readily than in H₂O,

$$Fl + H^+ \xrightarrow{\kappa_1} FlH^+$$
 (1)

and the absorption band due to (1) (λ_{max} 439 nm) in the absence of HClO₄ in MeCN undergoes a hypsochromic (blue) shift in the presence of HClO₄ even in slight excess (λ_{max} 366 nm). Such a blue-shift due to protonation is also observed for (2)H⁺ in MeCN (λ_{max} 388 nm). The protonation equilibrium constant K_1 ($K_1 = K_a^{-1}$) can be determined from the spectral change using equation (2), [A_0 is the absorbance at 439 nm due

$$A_0/A - 1 = K_1 \{ [\text{HClO}_4]_0 + (A/A_0 - 1) [\text{Fl}]_0 \}$$
(2)

to (1) in the absence of HClO₄, A is the absorbance in the presence of HClO₄, and the subscript 0 denotes the initial concentration. The K_1 values for different concentrations of H₂O in MeCN, determined from the slopes of the linear plots of $A_0/A - 1$ vs. [HClO₄]₀ + $(A/A_0 - 1)$ [Fl]₀, are listed in Table 1. The k_1 value in MeCN, which is much larger than that in H₂O, decreases significantly with an increase in the H₂O concentration in MeCN (Table 1).

Formation of Dihydroflavin Radical Cations .- On mixing AcrH₂ with the protonated flavin analogue FlH⁺ [(1)H⁺ or (2)H⁺] in the presence of HClO₄ in MeCN, an absorption band, characteristic of AcrH⁺ (λ_{max} 358 nm), was observed together with new absorption bands at $\lambda_{max} = 470$ and 500 nm for (1)H⁺ and $(2)H^+$, respectively. The absorption band at 500 nm derived from (2)H⁺ can be assigned to the dihydroriboflavin radical cation, (2)H₂^{+•.22,23} Thus, the new absorption band at λ_{max} 470 nm derived from (1) may also be assigned to the corresponding dihydroflavin radical cation, $(1)H_2^+$. This assignment was confirmed by the e.s.r. spectrum (a) of the resulting solution (see Figure 1). A computer-simulated spectrum of $(1)H_2^{+}$ is also shown (b) with the best-fit parameters, the hyperfine coupling constant (h.f.c.), $a_5(N)$ 0.675, $a_5(H)$ 1.255, $a_8(H)$ 0.465, $a_{10}(N)$ 0.210 mT, and the maximum slope line width, $\Delta H_{msl} = 0.050$ mT. The simulated spectrum agrees well with the observed spectrum, except for some line intensities, which probably disagree due to disregarding the h.f.c. for the 10-phenyl group. The large h.f.c. value due to N-5 proton and the lack of appreciable h.f.c. due to C-6 and C-9 protons are characteristic of a dihydroflavin radical cation.²⁴ The lack of appreciable h.f.c. due to the C(7) proton, N-1, or N-3 is also seen for flavin radical species [flavosemiquinone radial

Figure 2. Plots of the concentration of FlH_2^{+*} formed in the reduction of FlH^+ [(2)H⁺] by (a) AcrH₂ (\bigcirc) and (b) cis-[Et₂Co(bipy)₂]⁺ (\bigcirc) in the presence of excess HClO₄ in MeCN vs. [AcrH₂]₀/[(2)H⁺]₀ and [cis-Et₂Co⁺]₀/[(2)H⁺]₀.

anion (Fl⁻), neutral flavosemiquinone (FlH[•]), and dihydro flavin radical cation (FlH₂⁺)],²⁴ as confirmed by the MO calculation.²⁵ Essentially the same electronic and e.s.r. spectra were observed in the reactions of (1)H⁺ with *cis*-[R₂Co-(bipy)₂]⁺ in the presence of HClO₄ in MeCN.

The dihydroflavin radical cations (FlH_2^{+*}) are stable to oxygen in the presence of $HClO_4$ in MeCN, and it takes *ca*. 10 h to be completely oxidized by oxygen. The stability of FlH_2^{+*} to oxygen may be due to the protonation of FlH^* , equation (3). In

$$FlH' + H^+ \xleftarrow{k_2} FlH_2^+$$
(3)

fact, the deprotonated flavosemiquinone Fl^{-*} is known to be most reactive towards oxygen (rate constant of 2.5 × 10⁸ dm³ mol⁻¹ s⁻¹), but the direct oxidation of the protonated species (FlH^{*}) by oxygen becomes so slow that the oxidation of FlH^{*} may occur only *via* Fl^{-*} which is in equilibrium with FlH^{*}.²⁶ Thus, further protonation of FlH^{*} to FlH^{+*} may decrease reducing ability significantly.

The stoicheiometry of the formation of FlH_2^{++} , determined from the electronic spectra in the reaction of (1)H⁺ with AcrH₂ in the presence of HClO₄ in MeCN [Figure 2 (*a*)], is given by equation (4). In contrast with the case of AcrH₂ which is a two-

electron donor, the stoicheiometry of the reaction of $(1)H^+$ with $cis-[Et_2Co(bipy)_2]^+$ in the presence of $HClO_4$ in MeCN

Figure 3. (a) Dependence of the observed second-order rate constant k_{obs} on [HClO₄] for the reduction of FlH⁺, (1)H⁺ (\bigcirc) and (2)H⁺ (\bigcirc), in the presence of HClO₄ in MeCN at 298 K, and (b) the [HClO₄] dependence of k_{obs} of (1)H⁺ in the presence of 0.54 mol dm⁻³ H₂O in MeCN (\triangle).

[Figure 2(b)] indicates that cis-[Et₂Co(bipy)₂]⁺ acts as a oneelectron donor. Quantitative amounts of ethane and butane were obtained in the reactions of (1) with cis-[R₂Co(bipy)₂]⁺ (R = Me and Et, respectively) in the presence of HClO₄ in MeCN (see the Experimental section), as observed in the oneelectron oxidation of cis-[R₂Co(bipy)₂]⁺ by organic and inorganic one-electron oxidants.^{19,27} Thus, the stoicheiometry is given by equation (5).

$$cis-[R_2Co(bipy)_2]^+ + FlH^+ + H^+ \longrightarrow R-R + [Co(bipy)_2]^{2+} + FlH_2^{+}$$
(5)

Kinetics.—The rate of formation of FlH_2^{+} in the reduction of FlH_1^{+} by Acr H_2 obeyed pseudo-first-order kinetics in the presence of excess Fl and HClO₄, and the pseudo-first-order rate constant was proportional to the FlH⁺ concentration, as given by equation (6). The dependence of the observed second-

$$d[FlH_2^{+}]/dt = k_{obs}[AcrH_2][FlH^+]$$
(6)

order rate constant k_{obs} of both (1)H⁺ and (2)H⁺ on the HClO₄ concentration in MeCN is shown in Figure 3(*a*). In the absence of HClO₄, essentially no reaction occurs, but the k_{obs} value decreases with an increase in the HClO₄ concentration [Figure 3(*a*)]. When H₂O (0.54 mol dm⁻³) is added to the AcrH₂-(1)H⁺ system, the decrease of k_{obs} with an increase in the HClO₄ concentration [Figure 3(*a*)] is suppressed and k_{obs} becomes independent of the HClO₄ concentration [Figure 3(*b*)]. The primary kinetic isotope effects were also examined by replacing AcrH₂ with the 9,9'-dideuteriated analogue (AcrD₂) and the k_H/k_D values for the reduction of (1)H⁺ and (2)H⁺ by AcrH₂ and AcrD₂ in the presence of various concentrations of HClO₄ in MeCN at 298 K are listed in Table 2.

The $k_{\rm H}/k_{\rm D}$ values are constant with the change in the HClO₄ concentration and large primary kinetic isotope effects are observed for both (1)H⁺ and (2)H⁺, $k_{\rm H}/k_{\rm D} = 9.6 \pm 0.8$ and 9.9 \pm 0.8, respectively (Table 2).

Table 2. Primary kinetic isotope effects $(k_{\rm H}/k_{\rm D})$ for the reduction of FlH⁺ [(1)H⁺ and (2)H⁺] by AcrH₂ and AcrD₂ in the presence of HClO₄ in MeCN at 298 K.

	$k_{\rm H}/k_{\rm D}$		
$mol dm^{-3}$	(1)H ⁺	(2)H ⁺	
1.9 × 10 ⁻⁴	9.3		
4.2×10^{-4}	9.6	10.2	
8.7 × 10 ⁻⁴	8.8	10.6	
1.9×10^{-3}	10.4	9.1	
3.9×10^{-3}	9.8	9.9	

The experimental errors are writing $\pm 10/_0$	a	The	experimental	errors are	within	$\pm 10\%$
---	---	-----	--------------	------------	--------	------------

Figure 4. Plots of $\log(k_{obs}/dm^3 mol^{-1} s^{-1})$ vs. $\log([HClO_4]/mol dm^{-3})$ for the reduction of (2)H⁺ by cis-[R₂Co(bipy)₂]⁺ [R = Me (•) and Et (\bigcirc)] in the presence of HClO₄ in MeCN at 298 K.

Figure 5. Dependence of k_{obs} on the H₂O concentration for the reduction of (2)H⁺ by *cis*-[Et₂Co(bipy)₂]⁺ in the presence of HClO₄ in MeCN containing H₂O at 298 K.

Figure 6. Plots of the reduction potentials of Fl vs. $\log([H^+]/mol dm^{-3})$; (a) one-electron reduction potential of (2)H⁺ $[E(FIH^+/FIH_2^{+*})]$ in the presence of HClO₄ in MeCN at 298 K, determined from the oneelectron reduction of (2)H⁺ by cis- $[R_2Co(bipy)_2]^+$ $[R = Me(\Theta)$ and Et (\bigcirc)] using equation (8); (b) the reported one-electron reduction potential of (2) $[E(FI/FIH^+)]$ (\triangle) and (2)H⁺ $[E(FIH^+/FIH_2)]$ (\triangle) in H₂O;²⁹ and (c) the two-electron oxidation potential of AcrH₂ $[E-(AcrH^+/AcrH_2)]$ in the presence of HClO₄ in MeCN.¹⁵

The rate of electron transfer from $cis[R_2Co(bipy)_2]^+$ to (2)H⁺ in the presence of HClO₄ also obeyed the second-order kinetics, equation (7). In Figure 4, the log k_{obs} values for

$$d[FlH_2^{+}]/dt = k_{obs}[R_2Co^+][FlH^+]$$
(7)

electron transfer from cis- $[R_2Co(bipy)_2]^+$ (R = Me and Et) to (2)H⁺ in the presence of HClO₄ in MeCN at 298 K are plotted against log [H⁺]. The dependence of k_{obs} on the concentration of H₂O, which is added to the cis- $[Et_2Co(bipy)_2]^+$ -(2)H⁺ system in the presence of 0.10 mol dm⁻³ HClO₄ in MeCN, is shown in Figure 5. In contrast with the case of AcrH₂ (Figure 3), the k_{obs} value increases linearly with an increase in the HClO₄ concentration but decreases with an increase in the H₂O concentration (Figures 4 and 5, respectively).

Discussion

Redox Potentials of Fl in the Presence of HClO₄ in MeCN.— The observed second-order rate constants k_{obs} of electron transfer from cis-[R₂Co(bipy)₂]⁺ to organic one-electron oxidants in MeCN at 298 K have been correlated with the one-electron reduction potential of the oxidant (E_{red}^{0}) by equation (8),¹⁹ where the E_{ox}^{0} is the one-electron oxidation potential

$$\log k_{\rm obs} = -15.3(E_{\rm ox}^0 - E_{\rm red}^0) + 6.2 \tag{8}$$

of cis-[R₂Co(bipy)₂]⁺ (0.63 and 0.57 V vs. SCE, for R = Me and Et, respectively).¹⁹ Then, the one-electron reduction potential of FlH⁺ in the presence of HClO₄ in MeCN at 298 K, $E(FlH⁺/FlH_2⁺⁺)$, can be evaluated from the k_{obs} value using equation (8). The dependence of $E(FlH⁺/FlH_2⁺⁺)$ on the HClO₄ concentration, thus obtained, is shown in Figure 6, where the $E(FlH⁺/FlH_2⁺⁺)$ values derived from the rate constants of cis-[Me₂Co(bipy)₂]⁺ agree well with those derived from the rate constants of cis-[Et₂Co(bipy)₂]⁺ [Figure 6(a)]. The $E(FlH⁺/FlH_2⁺⁺)$ values are much more positive than the reported value of the one-electron reduction potential of (2) in the absence of HClO₄ in an aprotic solvent (-0.69 V vs. SCE),²⁸ and shifted to the positive direction with an increase in the HClO₄ concentration [Figure 6 (a)]. Such a positive shift of $E(FIH^+/FIH_2^+)$ may be casued by the protonation of FIH^{*} [equation (3)]. Under the conditions that the protonation equilibrium constant $K_2 \gg [HCIO_4]^{-1}$, the Nernst equation of $E(FIH^+/FIH^+)$ may be given by equation (9) where F is the

$$E(FlH^{+}/FlH_{2}^{+*}) = E^{0}(FlH^{+}/FlH^{*}) + (2.3RT/F)(\log[H^{+}] + \log K_{2})$$
(9)

Faraday constant (2.3RT/F = 0.059 at 298 K). According to equation (9), the $E(\text{FlH}^+/\text{FlH}_2^{+*})$ value is expected to be shifted to the positive direction by 0.059 V/log[H⁺], in accordance with the results in Figure 6(*a*) [the dotted line is drawn with the slope according to equation (9)]. Thus, the electron transfer from cis-[R₂Co(bipy)₂]⁺ to FlH⁺ becomes energetically more favourable with increased in HClO₄ concentration in MeCN and the rate is proportional to [HClO₄] (Figure 4). The cis-[R₂Co(bipy)₂]²⁺ formed in the electron transfer may be subject to the facile reductive coupling of the alkyl groups to yield R-R (Scheme 1).^{19,27}

$$cis - [R_2Co(bipy)_2]^+ + FIH^+ + H^+$$

 $cis - [R_2Co(bipy)_2]^{2+} + FIH_2^+$
 \downarrow
 $R-R + [Co(bipy)_2]^{2+}$

The reported values of the one-electron reduction potential of Fl $[E(Fl/FlH^{*})]$ and FlH^{*} $[E(FlH^{*}/FlH_{2})]$ in aqueous solutions²⁹ are also plotted against log[H⁺] in Figure 6(b). The positive shifts of $E(Fl/FlH^{*})$ and $E(FlH^{*}/FlH_{2})$ with a decrease in pH (= $-\log[H^{+}]$) are known to be caused by the protonation of Fl^{-*} and FlH⁻ [equations (10) and (11)],

$$Fl^{-} + H^+ \Longrightarrow FlH^{-}$$
 (10)

$$FlH^- + H^+ \rightleftharpoons FlH_2$$
 (11)

respectively.²⁹ In an aqueous solution, the further protonation of FlH' [equation (3)] occurs only in a strongly acidic solution, since the protonation equilibrium constant K_2 [equation (3)] in $H_2O(K_2 = 1)^{21}$ is much smaller than that in MeCN. Thus, the one-electron reduction potential in the presence of HClO₄ in MeCN is shifted to the positive direction relative to that in H_2O , due to the further protonation of FlH' in MeCN [equation (3)], as shown in Figure 6. This may be the reason why the rate constant of electron transfer from cis-[Et₂Co(bipy)₂]⁺ to (2)H⁺ in the presence of a fixed concentration of HClO₄ decreases significantly with an increase in the H₂O concentration in MeCN (Figure 5). According to equation (9), the $E(FlH^+/$ FlH_2^{+}) value may be shifted to the negative direction with an increase in the H_2O concentration, since the K_2 value may decrease with an increase in the H₂O concentration, when the electron transfer becomes energetically more unfavourable.

The other important difference between the one-electron reduction potentials in H₂O and MeCN is that the $E(FI/FIH^{+})$ value in H₂O is always more negative than the $E(FIH^{+}/FIH_{2})$ value, whereas the $E(FIH^{+}/FIH_{2}^{+*})$ value in MeCN is always more positive than the $E(FIH_{2}^{+*}/FIH_{2})$ value (-0.10 V vs. SCE).³⁰ Thus, the disproportionation equilibrium in H₂O [equation (12)] favours the formation of FIH₂, while the

comproportionation equilibrium [equation (13)] in MeCN

$$FlH_2 + FlH^+ + H^+ \rightarrow 2FlH_2^{+*}$$
 (13)

favours the formation of FlH_2^+ . This may be the reason why FlH_2^+ is formed in the reduction of FlH^+ by AcrH_2 [equation (4)] and *cis*-[R₂Co(bipy)₂]⁺ [equation (5)] in the presence of HClO_4 in MeCN.

Mechanisms of the Reduction of FlH^+ by AcrH_2 in the Presence of HClO_4 in MeCN.—The Gibbs energy change ΔG of the reduction of FlH^+ by AcrH_2 in the presence of HClO_4 in MeCN [equation (1)] is obtained from equation (14), where

$$\Delta G = 2[E(\operatorname{Acr}H^+/\operatorname{Acr}H_2) - E(\operatorname{Fl}H^+/\operatorname{Fl}H_2^{+*})] \quad (14)$$

the dependence of $E(FIH^+/FIH_2^+)$ on [HClO₄] is shown in Figure 6(*a*) and the two-electron oxidation potential of AcrH₂ [$E(AcrH^+/AcrH_2)$] is given by equation (15).

$$E(AcrH^{+}/AcrH_{2}) = [E(AcrH^{+}/AcrH_{2}) + E(AcrH^{+}/AcrH^{+})]/2 \quad (15)$$

The dependence of $E(\text{AcrH}^+/\text{AcrH}_2)$ on $[\text{HClO}_4]$, obtained from the reported values of $E^0(\text{AcrH}_2^{+*}/\text{AcrH}_2)$ (0.80 V vs. SCE), $E^0(\text{AcrH}^+/\text{AcrH}^*)$, and pK_a of AcrH_2^{+*} (2.0) in MeCN¹⁵ using equation (15), is also shown in Figure 6(c) where the ΔG value in equation (14) becomes negative in the region $[\text{HClO}_4] > 5 \times 10^{-5}$ mol dm⁻³. On the other hand, the Gibbs energy change of hydride transfer from AcrH₂ to FlH⁺ [equation (16)], ΔG_h obtained from the two-electron

$$AcrH_2 + FlH^+ \xrightarrow{k_h} AcrH^+ + FlH_2$$
(16)

oxidation potential $[E(AcrH^+/AcrH_2)]$ and the two-electron reduction potential $[E(FIH^+/FIH_2)]$ using equation (17), is

$$\Delta G_{\rm h} = 2 \mathrm{F} [E(\mathrm{Acr}\mathrm{H}^+/\mathrm{Acr}\mathrm{H}_2) - E(\mathrm{Fl}\mathrm{H}^+/\mathrm{Fl}\mathrm{H}_2)] \quad (17)$$

positive, 11 kJ mol⁻¹, which is independent of $[HClO_4]$, and so the hydride transfer is always endothermic. Thus, the overall reaction [equation (1)] becomes exothermic by the combination of the hydride transfer [equation (16)] with the comproportionation reaction [equation (13)].

Extensive studies on the hydride transfer reactions between NADH and NAD⁺ analogues have been reported by Kreevoy *et al.*^{16,31} The rate constants of the hydride transfer reactions have been correlated with the ΔG_h values and the self-exchange rate constants between the same pair of NADH/NAD⁺ analogues.³¹ By applying the Kreevoy's relation ³¹ to the present case, the rate constant of the hydride transfer from AcrH₂ to FlH⁺ [equation (16)] is calculated as 5.1×10^{-3} dm³ mol⁻¹ s⁻¹ from the self-exchange rate constant of AcrH⁺/AcrH₂ (4.3 × 10^{-2} dm³ mol⁻¹ s⁻¹) and the ΔG_h value (described above). In order to compare the calculated rate constant with the observed rate constant, the protonation of AcrH₂ [equation (18)] should be taken into account, since the protonated species

$$AcrH_2 + H^+ \xleftarrow{\kappa_3} AcrH_3^+$$
(18)

 $(AcrH_3^+)$ is known to be a much weaker reducing agent than free AcrH₂.¹³ In such a case, the observed second-order rate constant (k_{obs}) is related to the rate constant of hydride transfer from unprotonated AcrH₂ to FlH⁺ [k_h , equation (16)] as given by equation (19), which agrees with the result in Figure 3(*a*),

$$k_{\rm obs} = k_{\rm h} / (1 + K_3 [{\rm HClO_4}])$$
 (19)

Table 3. Comparison of the observed rate constant (k_{obs}) for the reduction of (2)H⁺ by AcrH₂ in the presence of HClO₄ in MeCN at 298 K with the calculated rate constant (k_{calc}) for the hydrogen transfer from AcrH₂ to (2)H⁺.

[HClO ₄]/ mol dm ⁻³	$k_{ m obs}/$ dm ³ mol ⁻¹ s ⁻¹	$k_{calc} a'/dm^3 mol^{-1} s^{-1}$
4.2×10^{-4}	1.3	1.9
8.7×10^{-4}	1.0	1.0
1.7×10^{-3}	0.60	0.53
3.9×10^{-3}	0.20	0.25
" Calculated based on equa	tions (21) and (22), s	see the text.

where k_{obs} decreases with an increase in the HClO₄ concentration. Equation (19) can also account for the effect of H₂O shown in Figure 3(b) where k_{obs} is independent of [HClO₄] in the presence of H₂O (0.54 mol dm⁻³), since the K_3 value is known to be decreased significantly in the presence of H₂O (0.54 mol dm⁻³) in MeCN.¹³ Thus k_{obs} becomes independent of [HClO₄] provided K_3 [HClO₄] $\ll 1$ [equation (19)]. According to equation (19), the calculated rate constant based on Kreevoy's relation should be divided by $(1 + K_3$ [HClO₄]) in order to compare the calculated rate constant with the observed rate constant in Figure 3. The calculated value using the K_3 value $(1.1 \times 10^4 \text{ mol}^{-1} \text{ dm}^3)^{13}$ in MeCN in the region [H₂O] $\ll 10^{-3}$ mol dm⁻³, however, is 2×10^3 times smaller than the corresponding observed rate constant of (2)H⁺ in Figure 3(a).

Kreevoy *et al.* also reported the correlation of the kinetic isotope effects $(k_{\rm H}/k_{\rm D})$ for hydride transfer reactions between NADH and NAD⁺ analogues including a flavin analogue with the $\Delta G_{\rm h}$ value.¹⁶ According to the correlation,¹⁶ the $k_{\rm H}/k_{\rm D}$ value is estimated as 5.4, which is much less than the observed value, 9.9 \pm 0.8 (Table 2). Thus, neither the rate constant nor the kinetic isotope effect can be correlated with the hydride transfer reactions between NADH and NAD⁺ analogues, which are claimed to occur *via* the one-step hydride transfer.^{16,30}

An alternative mechanism for hydride transfer from $AcrH_2$ to FlH^+ is shown in Scheme 2, where the hydrogen-atom

AcrH₂ + FlH⁺
$$\xrightarrow{k_{\text{H}}}$$
 (AcrH[•] FlH₂^{+•}) $\xrightarrow{\text{fast}}$ AcrH⁺ + FlH₂
Scheme 2.

(electron plus proton) transfer from AcrH₂ to FlH⁺ occurs to give the radical pair (AcrH[•] FlH₂^{+•}), followed by the facile electron transfer from AcrH[•] to FlH₂^{+•}, yielding AcrH⁺ and FlH₂, the latter of which is converted into FlH₂^{+•} by the fast comproportionation reaction [equation (13)]. The Gibbs energy change of electron transfer from AcrH[•] to FlH₂^{+•} is highly exothermic (-32 kJ mol⁻¹) based on the one-electron oxidation potential of AcrH[•] (-0.43 V vs. SCE)¹⁵ and the oneelectron reduction potential of FlH₂^{+•} (-0.10 V vs. SCE)³¹ in MeCN. Thus, hydrogen transfer from AcrH₂ to FlH⁺ in Scheme 2 may be the rate-determining step. The Gibbs energy change of the hydrogen transfer from AcrH₂ to FlH⁺ ($\Delta G_{\rm H}$) is given by equation (20), where $\Delta G_{\rm H}$ is independent of

$$\Delta G_{\rm H} = \mathrm{F}[E(\mathrm{Acr}\mathrm{H}^{\bullet}/\mathrm{Acr}\mathrm{H}_2) - E(\mathrm{Fl}\mathrm{H}^{+}/\mathrm{Fl}\mathrm{H}_2^{+\bullet})] \quad (20)$$

the HClO₄ concentration, since both $E(\text{AcrH}^{+}/\text{AcrH}_{2})$ and $E(\text{FlH}^{+}/\text{FlH}_{2}^{+})$ are shifted to the positive direction by 0.059 mV/log[H⁺].

The Marcus theory of atom-transfer reactions³² can be applied to calculate the rate constant of the hydrogen-transfer reaction, which is expressed by equation (21), where Z is the

$$k_{\rm H} = Z \exp(-\Delta G_{\rm H}^{\ddagger}/RT) \tag{21}$$

frequency factor, taken as 1×10^{11} dm³ mol⁻¹ s⁻¹, and the activation Gibbs energy ($\Delta G_{\rm H}^{\rm +}$) is given as a function of $\Delta G_{\rm H}$ by equation (22).³² The $\Delta G_{\rm D}^{\rm +}$ value corresponds to the activation

$$\Delta G_{\rm H}^{\ddagger} = \Delta G_{\rm 0}^{\ddagger} (1 + \Delta G_{\rm H}/4\Delta G_{\rm 0}^{\ddagger})^2 \tag{22}$$

Gibbs energy at $\Delta G_{\rm H} = 0$. The ΔG_0^{\ddagger} value may be taken as 22.6 kJ mol⁻¹ which is the sum of the ΔG_0^{\ddagger} values of the self-exchange of AcrH₂^{+•}/AcrH₂ and AcrH[•]/AcrH₂^{+•}.¹⁵ Then, the $k_{\rm H}$ value can be calculated from the ΔG_0^{\ddagger} and ΔG_H values using equations (21) and (22). According to equation (19), the calculated $k_{\rm H}$ value should be divided by $(1 + K_3[HClO_4])$ in order to compare it with the observed rate constants. The calculated values k_{calc} thus obtained in the presence of various concentrations of HClO₄ in MeCN at 298 K agree well with the observed values as shown in Table 3. Thus, it may be concluded that the reduction of FlH⁺ by AcrH₂ in the presence of HClO₄ in MeCN proceeds via a hydrogen (or electron plus proton) transfer from AcrH₂ to FlH⁺ (Scheme 2). At present, however, it is not clear whether the hydrogen transfer occurs via a direct transfer of a hydrogen atom or *via* the combination of electron and proton transfers. In the latter case, the acid-catalysed electron transfer from AcrH₂ to FlH⁺ to yield AcrH₂⁺ and FlH_2^{+} is unlikely to occur since the subsequent proton transfer from AcrH₂^{+•} to FlH₂^{+•} may be energetically unfavourable. Thus, the electron transfer from $AcrH_2$ to FlH^+ may be followed by proton transfer from $AcrH_2^+$ to FlH' yielding the radical pair (AcrH' FlH₂⁺) which is removed by the subsequent, fast electron transfer from AcrH[•] to FlH₂^{+•} without separation by diffusion to give the products, $AcrH^+$ and FlH_2 . The FlH₂ is converted into the stable radical cation (FlH₂^{+*}) by the facile comproportionation reaction [equation (13)]. In such a case, it may be difficult to distinguish clearly between the oneelectron process (Scheme 2) and the direct one-step twoelectron process (direct transfer of a hydride ion), although the former process can account for the magnitude of the observed rate constant better than the latter (see above). It should be emphasized that both one-electron and two-electron processes are rather extreme approaches to visualizing the actual transition state; the former from the energetics of formation of the high energy species (AcrH' FlH2+) used as a model of the transition state and the latter from the end of the energy surface of the reaction based on the overall Gibbs energy change. In any case, determining the actual approach should be based on the need to provide a better description of the energetics, as we have recently shown in the hydride-transfer reactions from NADH model compounds to a series of *p*-benzoquinone derivatives.15,33

Acknowledgements

This work was supported in part by a grant-in-aid (to S. F.) for scientific research from the Ministry of Education, Science and Culture, Japan.

References

- R. C. Bohinski, 'Modern Concepts in Biochemistry,' 3rd edn., Allyn & Bacon, Boston, 1979, p. 457; L. Stryer, 'Biochemistry,' 3rd edn., Freeman, New York, 1988, ch. 17.
- 2 T. P. Singer and E. B. Kearney, J. Biol. Chem., 1950, 183, 409.
- 3 C. H. Suelter and D. E. Metzler, *Biochim. Biophys. Acta*, 1960, 44, 22; I. M. Gascoigne and G. K. Radda, *ibid.*, 1967, 131, 502; G. K. Radda and M. Calvin, *Biochemistry*, 1964, 3, 384; J. L. Fox and G. Tollin,

ibid., 1966, **5**, 3873; E. Y. Wu, R. E. MacKenzie, and D. B. McCormick, *ibid.*, 1970, **9**, 2219.

- 4 G. A. Hamilton, Prog. Bioorg. Chem., 1971, 1, 83; V. Massey and P. Hemmerich, Enzymes, 3rd edn., 1976, 12, 191; C. Walsh, Acc. Chem. Res., 1980, 13, 148.
- 5 T. C. Bruice, L. Main, S. Smith, and P. Y. Bruice, J. Am. Chem. Soc., 1971, 93, 7327; M. Brüstlein and T. C. Bruice, *ibid.*, 1972, 94, 6548.
- 6 S. Shinkai, N. Honda, Y. Ishikawa, and O. Manabe, *Chem. Lett.*, 1984, 327; *J. Am. Chem. Soc.*, 1985, **107**, 6286; S. Shinkai, Y. Ishikawa, H. Shinkai, T. Tsuno, and O. Manabe, *Tetrahedron Lett.*, 1983, **24**, 1539; Y. Yano, M. Nakazato, and E. Ohya *J. Chem. Soc.*, *Perkin Trans.* 2, 1985, 77; Y. Yano and E. Ohya, *ibid.*, 1984, 1227; S. Shinkai, A. Harada, Y. Ishikawa, and O. Manabe, *ibid.*, 1982, 125.
- 7 E. T. Kaiser, H. L. Levin, T. Otsuki, H. E. Fried, and R. M. Dupeyre, *Adv. Chem. Ser.*, 1980, **191**, 35; C. Radziejewski, D. P. Ballou, and E. T. Kaiser, *J. Am. Chem. Soc.*, 1985, **107**, 3352.
- 8 M. F. Powell and T. C. Bruice, J. Am. Chem. Soc., 1983, 105, 1014.
- 9 S. Shinkai, N. Honda, Y. Ishikawa, F. Müller, and O. Manabe, Chem. Lett., 1985, 543.
- 10 S. Fukuzumi, S. Kuroda, and T. Tanaka, Chem. Lett., 1984, 417; ibid., 1984, 1375; J. Am. Chem. Soc., 1985, 107, 3020; J. Chem. Soc., Perkin Trans. 2, 1986, 25.
- 11 C. C. Johnston, J. L. Gardner, C. H. Suelter, and D. E. Metzler, *Biochemistry*, 1963, 2, 689; C. S. Y. Kim and S. Chaykin, *ibid.*, 1968, 7, 2339.
- 12 P. van Eikeren, D. L. Grier, and J. Eliason, J. Am. Chem. Soc., 1979, 101, 7406; E. B. Skibo and T. C. Bruice, *ibid.*, 1983, 105, 3316.
- 13 S. Fukuzumi, M. Ishikawa, and T. Tanaka, J. Chem. Soc., Chem. Commun., 1985, 1069; Tetrahedron, 1986, 42, 1021.
- 14 F. Yoneda, K. Shinozuka, K. Tsukudo, and A. Koshiro, J. Heterocyl. Chem., 1979, 16, 1365; F. Yoneda, Y. Sakuma, M. Ichiba, and K. Shinomura, J. Am. Chem. Soc., 1976, 98, 830.
- 15 S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., 1987, 109, 305.
- 16 D. Ostović, R. M. G. Roberts, and M. M. Kreevoy, J. Am. Chem. Soc., 1983, 105, 7629.

- 17 P. Karrer, L. Szabo, H. J. V. Krishna, and R. Schwyzer, *Helv. Chim. Acta*, 1950, **33**, 294.
- 18 G. Mestroni, A. Camus, and E. Mestroni, J. Organomet. Chem., 1970, 24, 775.
- 19 S. Fukuzumi, K. Ishikawa, and T. Tanaka, J. Chem. Soc., Dalton Trans., 1985, 899.
- 20 D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, 'Purification of Laboratory Chemicals,' Pergamon Press, New York, 1966.
- 21 P. Hemmerich, C. Veeger, and H. C. S. Wood, Angew. Chem., 1965, 77, 699; K. H. Dudley, A. Ehrenberg, P. Hemmerich, and F. Müller, *Helv. Chim. Acta*, 1964, 47, 1354; P. F. Heelis, Chem. Soc. Rev., 1982, 11, 15.
- 22 W. R. Weimar, A. H. Neim, 'Riboflavin,' ed. R. S. Rivlin, Plenum Press, New York, 1975, p. 7.
- 23 A. N. Singh, E. Gelerinter, and E. S. Gould, *Inorg. Chem.*, 1982, 21, 1232; E. J. Land and A. J. Swallow, *Biochemistry*, 1969, 8, 2117.
- 24 F. Müller, P. Hemmerich, and A. Ehrenberg, 'Flavins and Flavoproteins,' ed. H. Kamin, University Park Press, Baltimore, 1971, p. 107.
- 25 A. V. Guzzo and G. Tollin, Arch. Biochem. Biophys., 1963, 103, 231.
- 26 M. Faraggi, P. Hemmerich, and I. Pecht, FEBS Lett., 1975, 51, 47.
- 27 S. Fukuzumi, K. Ishikawa, K. Hironaka, and T. Tanaka, J. Chem. Soc., Perkin Trans. 2, 1987, 751.
- 28 D. T. Sawyer and R. L. McCreery, Inorg. Chem., 1972, 11, 779.
- 29 R. D. Draper and L. L. Ingraham, Arch. Biochem. Biophys., 1968, 125, 802; R. F. Anderson, Biochim. Biophys. Acta, 1983, 722, 158.
- 30 M. M. Kreevoy, D. Ostović, I.-S. H. Lee, D. A. Binder, and G. W. King, J. Am. Chem. Soc., 1988, 110, 524.
- 31 M. G. Dowling and M. J. Clarke, Inorg. Chim. Acta, 1983, 78, 153.
- 32 R. A. Marcus, J. Phys. Chem., 1968, 72, 891.
- 33 S. Fukuzumi, N. Nishizawa, and T. Tanaka, J. Org. Chem., 1984, 49, 3571; J. Chem. Soc., Perkin Trans. 2, 1985, 371.

Received 8th November 1988; Paper 8/03427C